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1. Introduction

The Bagger-Lambert-Gustavsson(BLG)theory [1, 2] is a three dimensional Chern-Simons-

Higgs system with superconformal invariance for M2 branes. It has 16 supersymmetries

and so(8) global symmetry. The theory is based on the gauge symmetry generated by

three algebra, and it is known that so(4) is the unique choice for its realization of the finite

representation with ghost free theory [3]. The generalization beyond so(4) has been studied

using Lorentzian representation [4] or infinite dimensional representation [5], and the latter

has the natural connection to M5 physics. The formulation of N number of interacting M2s

in flat space time has been proposed by Aharony-Bergman-Jafferis-Maldacena [6](ABJM).

It is N = 6 U(N) × U(N) Chern-Simons gauge theory with su(4) global symmetry with

matter interaction given by a quartic superpotential. Still the realization of N = 8 theory

is not known yet. Another way of generalization both for BLG [7] and ABJM [8 – 10] can

be performed by mass deformation, which breaks scale invariance and the global symmetry

while keeping the supersymmetries.

The BLG theory and the ABJM theory have interacting M2-brane description and

also the theory portray supersymmetric objects of the 11 dimensional quantum gravity.

Those object will be obtained from classical BPS solutions in the dual field theory. Some

of 1
2 BPS equations have been written and also the solutions have been studied by the

various authors. The systematic classification of BPS objects has been done in [11] and

some of their solutions have been further studied in [12]. New M2, M5 objects are actively

investigated in Bagger-Lambert theory [1, 2, 4, 5, 7, 12 – 15] and in N = 6 Chern-Simons

gauge theory of ABJM [6, 8 – 10, 16 – 21]. It is found that there are various objects like fuzzy

funnels, fuzzy spheres, domain walls, and vortices. Our interest is about vortices, which

are covariantly holomorphic curves in the transverse coordinates in terms of membrane

perspective. We search for such an object by assimilating vortices of 2+1 dimensional

Chern-Simons-Higgs theory in the mass deformed Bagger-Lambert theory [7] when so(4)×
so(4) global symmetry is broken to so(2)× so(2)× so(4). We adopt so(4) representation of

the BLG theory, which is equivalent to N = 8 Chern-Simons-Higgs theory with su(2)×su(2)
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gauge symmetry [18]. It may be convenient to take up the latter representation to generalize

the result into ABJM theory, but the three bracket notation in so(4) representation provides

simpler and clearer way to construct our problem.

The size of the vortex is proportional to the inverse square root of the mass parameter

and its energy is bounded below by quantized magnetic flux in the Chern-Simons-Higgs

theory. For Abelian N = 1 or N = 2 Chern-Simons-Higgs theory, mass parameter of the

theory must be introduced to have a regularized finite energy vortex configuration [28,

29]. For Maxwell-Higgs theory Fayet-Iliopoulos(FI)-parameter play the same role [30] to

regularize the vortex configuration. We have only singular extended and infinte energy

object in the Bagger-Lamber theory [12], but we have regular localized and finite energy

object in the mass deformed Bagger-Lambert theory, since the mass parameter resolves

regularity issues.

In the following main section, we start with the mass deformed Bagger-Lamber ac-

tion [7]. Then we derive a set of 1
2 BPS equations and check the energy of the system is

bounded below by central charges. In the first subsection (2.1) we show how the vortex

equations are brought about and how regularity issues are resolved. In the second sub-

section (2.2) finally we provide the explicit solution whose energy is bounded below by

quantized charges.

2. Half BPS configuration in the mass deformed Bagger-Lambert theory

We start our discussion by invoking the bosonic part of the mass deformed Bagger-Lambert

theory. It is [7]

L = −1

2
DµXID

µXI − V (XI)

+
1

2
ǫµνλ

(

fabcdAµ ab∂νAλ cd +
2

3
f cda

gf
efgbAµ abAν cdAλ ef

)

, (2.1)

where

V (XI) =
1

2 · 3! [XI ,XJ ,XK ][XI ,XJ ,XK ] +
m2

2
XIXI

+4m(X1[X2,X3,X4] − X5[X6,X7,X8]) , (2.2)

with I = 1, 2, · · · , 8 and µ = t, x, y. Here a, b, c, d are gauge indices.1 DµXI
a =

∂µXI
a − Ãb

aX
I
b and Ãµ

a
b = Aµcdf

cda
bt. Three bracket is defined as [XI ,XJ ,XK ]a =

fabcdXI
bXJ

cXK
d where we adopt so(4) representation fabc

d = fabcd = εabcd [1]. We see

that so(8) global symmetry is broken to so(4) × so(4) by the mass term. All the variables

are three-algebra valued. The trace over whole expression is implied and will be omitted

when its meaning is obvious. Recall that in contrast to the original convention [1] we take

µ ≡ 0, 9, 10 directions as for the M2-brane worldvolume for simplicity [11],

x0≡ t , x9≡ x , x10≡ y . (2.3)

1We restrict ourselves to Chern-Simon’s level κ = −1. In [7], the authors use different spinor conventions

Γ12345678
ǫ = −ǫ in contrast to ours such that Γ12345678

ǫ = ǫ. It differs by labeling 7 and 8 in exchange, so

we have sign difference in the quartic term.
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The energy momentum tensor is

Tµν = DµXI
aDνXaI − ηµν

(

1

2
DρX

aIDρX I
a + V (XI)

)

. (2.4)

The Chern-Simons term doesn’t contribute to the energy momentum because it is topolog-

ical. The Hamiltonian is readily obtained from T00. There are several choices of completing

squares of the Hamiltonian according to BPS configurations we are interested in. Consid-

erable number of BPS equations were classified according to global symmetries on M2 [11].

For our pursuit to the vortex configuration among various M2 intersecting on M2s, we con-

centrate on the sector where so(2)× so(2)× so(4) global symmetry exists. Supersymmetry

transformation for the spinors are

δΨ =

(

FµIΓ
µI + mΓ1234Xa

I ΓI −
1

6
FIJKΓIJK

)

ǫ , (2.5)

where all the variables are three-algebra valued again and we set

FµI ≡ DµXI , FIJK ≡ [XI ,XJ ,XK ] . (2.6)

By imposing the BPS condition in this transformation (2.5), we derive the BPS equations.

The mass deformed theory has so(1, 2) × so(4) × so(4) global symmetry. BPS equations

for q-balls and vortices in the selfdual Chern-Simons Higgs theory were shown to describe

the 1
4 BPS configuration in mass deformed BLG theory [7] with two projectors as 1

2(1 ±
Γxy12)P and 1

2(1 ± Γxy34)P [7], where P = 1
2(1 + Γ12345678). We search for a U(1) vortex

imbedding in the mass deformed Bagger-Lambert theory with so(4) gauge group in the 1
2

BPS configuration. We choose projector for supersymmetry parameter as 1
2(1 + Γxy12)P

to project out N = 8 supersymmeties leaving so(2) × so(2) × so(6) isometry and in effect

the BPS configuration should have so(2) × so(2) × so(2) × so(4) global symmetry. BPS

equations of mass deformed Bagger-Lambert theory are read from

(

F a
µI ΓµI + mΓ1234Xa

I ΓI −
1

6
FIJKΓIJK

)

(1 + Γxy12)Pǫ = 0 (2.7)

We take the eleven-dimensional gamma matrix representation that makes the so(8)

symmetry incarnate. The eleven-dimensional 32×32 gamma matrices ΓM , M = µ, I,

µ = t, x, y, I = 1, 2, · · · , 8 in Bagger-Lambert theory naturally decompose into two parts:

so(1, 2) for the M2-brane worldvolume and so(8) for the transverse space

Γt = ε⊗ γ(9) , Γx = σ1 ⊗ γ(9) , Γy = σ3 ⊗ γ(9) , ΓI = 1⊗ γI , I = 1, 2, · · · , 8 . (2.8)

Gamma matrices for so(1, 2) were chosen as σµ = {ε, σ1, σ3} all of which are real. Then

11 dimensional Majorana condition is trivial when we pick representation for so(8) gamma

matrices to be real too. Here γI ’s are the 16×16 gamma matrices in the eight-dimensional

Euclidean space and γ(9) ≡ γ12···8. Clearly in this representation the chirality of so(1, 2)

coincides with that of so(8)

Γtxyǫ = Γ12345678ǫ = ǫ . (2.9)

– 3 –
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In addition,

γI =







0 ρI

(ρI)
T 0






, ρI(ρJ )T + ρJ(ρI)

T = 2δIJ , γ(9) = γ12345678 =

(

1 0

0 −1

)

.

(2.10)

Here Γtxy = 1 ⊗ γ(9). It is consistent with the fact that the product of all the eleven-

dimensional gamma matrices leads to the identity Γtxy123···8 = 1. It is convenient to

decompose 32 × 32 gamma matrices under chirality condition Γtxyǫ[32] = ǫ[32], meaning

identically γ(9)ǫi
[16] = ǫi

[16] when ǫ[32] =

(

ǫ1
[16]

ǫ2
[16]

)

. Our projector in this representation is

(1 + Γxy12)P =









1 0 −ρ1T ρ2 0

0 0 0 0

ρ1ρ2T 0 1 0

0 0 0 0









. (2.11)

After a routine calculation of arranging gamma matrix products and reading coefficients

in front of them and setting them to vanish, we obtain the set of 1
2 BPS equations as,

Fx1 + Fy2 = 0 , Fx2 − Fy1 = 0 , (2.12)

Ft1 = 0 , Ft2 = 0 , Ft3 + F312 − mX4 = 0 ,

Ft4 + F412 + mX3 = 0; FtÃ = FÃ12 , (2.13)

Fx3 = Fy3 = 0 , Fx4 = Fy4 = 0 ; FxÃ = FyÃ = 0 , (2.14)

mX1 = −F234 , mX2 = F134 ;

mXÃ = ǫÃB̃C̃D̃FB̃C̃D̃ , other FIJKs vanish. (2.15)

Here A = 1, 2, 3, 4 and Ã = 5, 6, 7, 8. In addition, we have to solve the equation of motion

for the gauge field. It is

F̃µν
a
b + εµνλXJ

c DλXJ
d f cda

b = 0 , (2.16)

where F̃µν
a
b = ∂νÃµ

a
b − ∂µÃν

a
b − Ãµ

a
cÃν

c
b + Ãν

a
cÃµ

c
b and εtxy = 1 . Part of the

transverse coordinates X1 and X2 together with the x, y of the M2-brane world volume on

SO(1, 2) are complexified in such a way as

Xω =
1√
2
(X1 − iX2) , Dz =

1√
2
(Dx − iDy) . (2.17)

The equations (2.12) give rise to vorticity and they can be written compactly as,

DzXω̄ = 0 . (2.18)

With its complex conjugate we call both as holomorphic covariance. Time dependent

solutions are generically existent. DtX
I 6= 0 implies a nonzero momentum along XI

direction and it is the M-wave. The last equation of (2.13) shows that M-wave momenta

along so(4) are proportional to non-vanishing three brackets FĀB̄C̄ which are related to the

– 4 –
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existence of M5-branes. The remaining equations in ( 2.13 ) show that M-wave momenta

along X3 and X4 are proportional to the mass terms as well as three products, and M-

wave on holomorphic directions vanishes. Rewriting the Hamiltonian as sum of complete

squares, we have

H =
1

2

∫

dxdy

(

|DtX1|2 + |DtX2|2 + |DxX1 + DyX2|2 + |DxX2 − DyX1|2

+|mX1 + [X2,X3,X4]|2 + |mX2 − [X1,X3,X4]|2

+|DxX3|2 + |DyX3|2 + |DtX3 + [X3,X1,X2] − mX4|2

+|DxX4|2 + |DyX4|2 + |DtX4 + [X4,X1,X2] + mX3|2

+|mXĀ − ǫĀB̄C̄D̄[XB̄ ,XC̄ ,XD̄]|2

+|DxXĀ|2 + |DxXĀ|2 + |DtXĀ + [XĀ,X1,X2]|2

+[X1,X3,XĀ]2 + [X2,X3,XĀ]2 + [X1,X4,XĀ]2

+[X2,X4,XĀ]2 +
1

2
[XA,XĀ,XB̄ ]2

)

+

∫

dxdy (Z [12] + R[34] ) . (2.19)

In completing squares the Hamiltonian we again have the equivalent set of BPS equa-

tions (2.12), (2.13), (2.14 ), (2.15) that are obtained from solving the killing spinor equa-

tions. The gauss constraint is necessary for verification. The energy is bounded below by

two central terms Z [12] and R[34] whose generic definitions are

ZIJ = −∂i(X
IDjX

J ǫij) , RIJ = −2m(XID0X
J − XJD0X

I) . (2.20)

The former Z [12] is the same central charge that appears in [13, 14] and it simplifies further

to
∫

d2x Z12 =
∫

dzdz̄∂z∂z̄ (Xa
ωXω̄a) using BPS equations (2.18). The latter is nothing but

an angular momentum on X3 and X4 plane [7].

2.1 Vortex

For simplicity, we turn off X5,X6,X7,X8 consistently with the equations involving XÃs

which are at the right sides to the semicolons in (2.13), (2.14), (2.15). Then the poten-

tial (2.2) simplifies:

V =
1

2

(

[X3,X1,X2]
2 + [X4,X1,X2]

2 + [X1,X3,X4]
2 + [X2,X3,X4]

2
)

(2.21)

+
m2

2
(XAXA) + 4mX1[X2,X3,X4] . (2.22)

We set X1,X2,X3,X4 as

X1 =
(

−det M
m

a, det M
m

b , 0 , 0
)

,

X2 = (b , a , 0 , 0 ) ,

X3 =
(

0 , 0 ,M3
3 ,M3

4
)

,

X4 =
(

0 , 0 ,M4
3 ,M4

4
)

.

(2.23)

– 5 –
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Note that this ansatz readily solves the first two BPS equations in (2.15). We will denote

X3 and X4 values depicted in the lower right block-diagonal 2×2 matrix as Mi
j . From the

equation (2.12) Az
1
3 or Az

1
4 have trivial values according to the above ansatz therefore,

Ãz =











0 Az
1
2 0 0

−Az
1
2 0 0 0

0 0 0 Az
3
4

0 0 −Az
3
4 0











, Ãt =











0 At
1
2 0 0

−At
1
2 0 0 0

0 0 0 At
3
4

0 0 −At
3
4 0











. (2.24)

Under these ansatz the Gauss constraint is

F̃xy
a
b = −2

det M

m

∑

i,j=3,4

|Mi
j|2
(

ΦΦ̄ − m2

∑ |Mi
j |2
)

ǫ34a
b , (2.25)

and the angular momentum is

R34 = 2m2
∑

|Mi
j|2 − 4 det M2(a2 + b2) . (2.26)

To have vorticity in convenient way we fix the scale of X3 and X4 as,

detM = m . (2.27)

In complex coordinates X1 and X2 are written as Xw = (Φ, iΦ, 0, 0) and Xw̄ = (Φ̄,−iΦ̄, 0, 0)

where Φ = − 1√
2
(a + ib) so that 2ΦΦ̄ = a2 + b2. This means that we restrict ourselves only

to the α(z, t) = 0 sector in [12]. Then covariantly holomorphic conditions (2.18) become

DzΦ̄ = 0 , (2.28)

where Dz = ∂z + Az
1
2. Recall that the gauge transformation of the Bagger-Lambert

theory is

δÃµ
a
b = ∂µΛa

b − Λb
cÃµ

c
a + Ãµ

b
cΛ

c
a . (2.29)

Only the local U(1)×U(1) out of so(4) is left when we turn off 2× 2 off diagonal blocks of

the gauge fields (2.24). Each Aµ
1
2 and Aµ

3
4 corresponds to U(1) and U(1) subsequently.

As is usually done, we decompose complex valued Φ(t, z, z̄) in terms of its magnitude and

of its phase as Φ = e−g+iϕ. By gauge choice we may set Λ1
2 = ∓ϕ(t, z, z̄) so that Φ = e−g,

Az
1
2 = ±i∂zg locally. The solutions that were studied in [12] was for real Φ without any

global phase. Here we are going to consider a solution whose global U(1) phase is non zero

such that

Φ = e−g(r)+iNθ , Az
1
2 = i

N − a(r)

2z
, (2.30)

where iϕ(t, z, z̄) is chosen as iNθ with z = reiθ. To make gauge field well defined at the

origin one should have a(0) = N . At infinity we take the boundary condition a(∞) = 0 to

make DzΦ vanish asymptotically so as to achieve a finite energy system. And that implies

quantized magnetic flux over the whole M2 since
∮

r→∞ Ai
1
2 dxi = −2πN . It is worth to

note that in the Bagger-Lambert theory of so(4) gauge group representation, the magnetic

– 6 –
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flux itself Fzz̄
a
b is not physical since it clearly breaks so(4) invariance. Moreover the energy

is not bounded by magnetic flux unlike usual Chern-Simons vortices. Since we focus on

the abelian nature of the theory and on the construction of a localized object, we apply

the same well known properties of the vortex so as to make the flux for the very unbroken

U(1) be quantized. However the vortex equation (2.28) specifies the relation between the

magnitude of Φ and the unbroken U(1) gauge field. Plugging this relation into the Gauss

constraint equation we can get the ordinary equation to specify the whole profile of the

vortex. In addition it is worth to note that Fxy
3
4 = 0 since all DtXI = 0 except I = 3 , 4.

Therefore the field strength of U(1) gauge potential should vanish everywhere on the M2

world volume and Ai
3
4 should be a pure gauge. We can also settle down regularity issue

conveniently when detM = m,

F̃xy
1
2 = −2

∑

|Mi
j |2
(

ΦΦ̄ − m2

∑ |Mi
j|2
)

, (2.31)

R34 = 2m2

(

∑

|Mi
j|2 − 4ΦΦ̄

)

. (2.32)

Solving vanishing magnetic flux and angular momentum at infinity Fxy
1
2(∞) = R34(∞) =

0, we obtain asymptotic values of fields as 2ΦΦ̄ = m and 1
2

∑ |Mi
j |2 = m. These boundary

values automatically set V (∞) = 0 in (2.22). For energy finiteness it is an important

property but is not unexpected because we have seen that the energy is bounded below by

the angular momentum R34 and the central charge Z12 which consists of magnetic flux of

U(1) gauge potential multiplied by XIs and the other covariant derivative terms (2.19).

2.2 Static M5

So far (2.15) and the right side equations to the semicolons in all (2.13), (2.14) and (2.15)

have been solved. We are going to solve each of the remaining equations in (2.13), (2.14)

subsequently, leaving the holomorphic covariance (2.12) and the Gauss constraint. Denote

Mi
j as,

M =

(

X −Y

Y X

)

. (2.33)

BPS equations (2.14) for X3 and X4 can be solved as Ai
3
4 = ∂iX

Y
= −∂iY

X
. Hence ∂i(X

2 +

Y 2) = 0. The condition (2.27) fixes integration constant and therefore it is natural to write

X =
√

m cos(ζ(x, y) + wt) and Y =
√

m sin(ζ(x, y) + wt). Then Ai
3
4 = −∂iζ which is a

pure gauge and is consistent with the fact that magnetic flux Fxy
3
4 is zero everywhere.

The frequency w is fixed by equations (2.13),

DtX4 = −[X4,X1,X2] − mX3 ,

DtX3 = −[X3,X1,X2] + mX4 ,
(2.34)

which are simply equations for oscillators. Ẍ = −w2X and Ÿ = −w2Y where w =

2ΦΦ̄ − At
3
4 − m. These imply the equations of motion for the electric field automatically

– 7 –
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and it further restricts At
3
4 by,

F̃tzX4 = (DzDt − DtDz)X4 = −Dz[X4,X1,X2] − mDzX3 ,

= iDz[X4,Xω ,Xω̄] ,

F̃tzX3 = iDz[X3,Xω ,Xω̄] .

(2.35)

Implementing ansatz and using BPS equations again, ∂zAt
3
4 = ∂z(2ΦΦ̄) together with

complex conjugate of the equation, we determine At
3
4 = 2ΦΦ̄ − C. The frequency w is

arbitrary up to integration constant. In fact this constant is a gauge degree of freedom and

can be chosen to be m so as to make X and Y be static. Therefore c = m. But even though

X and Y are static, we have non-vanishing M-wave frequency so is the angular momentum

on 3,4 plane because At
3
4 carries it. Assuming X1 and X2 be time independent, At

1
2 = 0

when the equations DtX1 = 0 ,DtX2 = 0 in (2.13) are solved. The solution which solves

all the equations in (2.13), (2.14), (2.15) is summarized as,











~Xω

~Xω̄

~X3

~X4











=











Φ iΦ 0 0

Φ̄ −iΦ̄ 0 0

0 0
√

m cos(ζ) −√
m sin(ζ)

0 0
√

m sin(ζ)
√

m cos(ζ)











, (2.36)

Ãz =











0 i
N−a(r)

2z
0 0

−i
N−a(r)

2z
0 0 0

0 0 0 −∂iζ

0 0 ∂iζ 0











,

Ãt =











0 0 0 0

0 0 0 0

0 0 0 2ΦΦ̄ − m

0 0 −2ΦΦ̄ + m 0











. (2.37)

Undetermined real function ζ can be gauged away. We are left with the equation (2.12)

and the Gauss law, which give the well known vortex equations. They are

DzΦ̄ = 0 , F̃xy
1
2 = −4m

(

ΦΦ̄ − m

2

)

, (2.38)

with the boundary conditions Fxy
1
2(∞) = 0 and R34(∞) = 0 which set |Φ| go to

√

m
2 at the

boundary of the M2 world volume. As defined, Φ = e−g(r)+iNθ. g and a are determined

by the ordinary equation under the boundary conditions specified in (2.32), which are

a(0) = N , a(∞) = 0 where we can win a regular profile. The covariantly holomorphic

equation determines the magnitude of Φ in terms of a(r) i , e e−g =
√

m
2 e

R

∞

r

a

r′
dr′ that is

indeed set to
√

m
2 asymptotically. The ordinary equation for a is read from the Gauss

constraint which is a
′′ − 2a+1

r
a′−4m2a = 0. As is well known it is a nonlinear equation and

can be solved numerically. The corresponding behavior of e−g near the origin is regular

and has zero value at the origin when we numerically plot the curve [30, 28]. The energy is

bounded below by the angular momentum on 3, 4 plane only because covariant derivative on

Higgs field vanishes asymptotically for the vortex solutions so that
∫

d2xZ12 = 0. Moreover

– 8 –
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it is quantized: E ≥
∫

d2xR34 = −8m2
∫

d2x(ΦΦ̄− m
2 ) = 2m

∫

d2xF̃xy
1
2 = 2 ·2mπN . With

the gauge choice of ζ(x, y) = 0, the excitations on X1,X2,X3,X4 are asymptotically:











~X1

~X2

~X3

~X4











=
√

m











cos Nθ − sinNθ 0 0

− sin Nθ − cos Nθ 0 0

0 0 1 0

0 0 0 1











. (2.39)

3. Discussion

An incorporation of U(1) vortex in Chern-Simons-Higgs theory of so(4) gauge group has

been performed. Consequently a regular finite energy profile of M2 excitation is shown

to exist in the 1
2 BPS configuration of the mass deformed Bagger-Lamber theory with

so(2)×so(2)×so(2)×so(4) global symmetry. All the explicit supersymmetric configurations

for the BLG theory that have been presented in [12] were singular and it was partly because

the BLG theory lacks a dimensionfull parameter which could set out the regularization

scale. It was expected that we might have a regular 1
2 BPS object in the mass-deformed

Bagger-Lambert theory, and we have shown that indeed we have such an object in the

mass deformed theory. 1
4 BPS objects like q-balls and vortices are discussed in [7] and

such 1
4 BPS configurations may correspond to some bound state of these 1

2 BPS object.

Non Abelian vortex [31, 32] may exist in the BLG theory without mass parameter and it

will be interesting object, but it is somehow difficult to find. Therefore we concentrated

on the U(1) vortices only. We reiterate our result in a concise way. Since we have taken

so(4) representation and turned on four coordinates only, we may put X ≡ XA
a as 4 × 4

matrix, where A spans 1, 2, 3, 4. We dropped 2 × 2 off diagonal blocks both for Higgs field

and for the gauge fields to manifest the U(1)× Ū(1) unbroken gauge symmetry. By setting

ζ(x, y) = 0,

X =

[

(

Φ iΦ

Φ̄ −iΦ̄

)

0

0
√

m1

]

,

Ãz =

[

(

0 Az
1
2

−Az
1
2 0

)

0

0 0

]

,

Ãt =

[

0 0

0

(

0 2ΦΦ̄ − m

−ΦΦ̄ + m 0

)

]

. (3.1)

where we see a vortex (2.37) on X1 and X2 and a constant excitation on X3 and X4. The

function Φ together with Az
1
2 satisfies the well known Abelian vortex equations(2.38). The

nonvanishing charges associated with each 2 × 2 diagonal excitations are schematically,

Magnetic Electric Angular Momentum
[
∫

d2x F̃xy
1
2 = 2πN 0

0 0

]

,

[

0 0

0
∫

d2x F̃0i
3
4

]

,

[

0 0

0
∫

d2x R34 = 4mπN

]

.

(3.2)
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M2: t x y - - - - - - - -

M2: t - - 1 2 - - - - - -

MW: t - - - - 3 - - - - -

t - - - - - 4 - - - -

M5: t x y 1 2 3 - - - - -

t x y 1 2 - 4 - - - -

Table 1: The M-theory configuration.

The M-wave along X3 and X4 has angular momentum coming solely from the gauge po-

tential Ãt
3
4, and the angular momentum is related to the electric charge as a consequence.

The M-theory configuration for MW-M2-M2-M5 bound state can be summarized in table.

The limit m → 0 is trivial because the magnetic flux vanishes (2.38). Multi-vortex

solution is straightforward. The vortex scattering problem will be an interesting topic.

Switching our result into su(2) × su(2) representation which is identical to so(4) we used

can readily be performed [18]. The ABJM [6] generalization of this object and the gravity

duals in AdS/CFT perspective might be other ways for further study and they are partly

under progress.
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